首页> 外文OA文献 >Meta-orbital Transition in Heavy-fermion Systems: Analysis by Dynamical Mean Field Theory and Self-consistent Renormalization Theory of Orbital Fluctuations
【2h】

Meta-orbital Transition in Heavy-fermion Systems: Analysis by Dynamical Mean Field Theory and Self-consistent Renormalization Theory of Orbital Fluctuations

机译:重费米子系统中的眶内跃迁:动力学分析   平均场理论与轨道自洽的重整化理论   波动

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate a two-orbital Anderson lattice model with Ising orbitalintersite exchange interactions by means of dynamical mean field theorycombined with the static mean field approximation of the intersite orbitalinteractions. Focusing on Ce-based heavy-fermion compounds, we examine theorbital crossover between the two orbital states, when the total f-electronnumber per site n_f is n_f ~ 1. We show that a "meta-orbital" transition, atwhich the occupancy of the two orbitals changes steeply, occurs when thehybridization between the ground-state f-electron orbital and conductionelectrons are smaller than that between the excited f-electron orbital andconduction electrons. Near the meta-orbital critical end point, the orbitalfluctuations are enhanced, and couple with the charge fluctuations. A criticaltheory of the meta-orbital fluctuations is also developed by applying theself-consistent renormalization theory of itinerant electron magnetism to theorbital fluctuations. The critical end point, first-order transition andcrossover are described within Gaussian approximations of orbital fluctuations.We discuss the relevance of our results to CeAl2, CeCu2Si2, CeCu2Ge2 and therelated compounds, which all have low-lying crystalline-electric-field excitedstates.
机译:我们通过动态平均场理论与场间轨道相互作用的静态平均场近似相结合,研究了具有Ising轨道场间交换相互作用的二轨道Anderson晶格模型。重点研究基于Ce的重铁化合物,当每个位点的总f电子数n_f为n_f〜1时,我们检查了两个轨道状态之间的轨道交叉。我们证明了“元轨道”过渡,当基态f电子轨道与导电电子之间的杂化比激发的f电子轨道与导电电子之间的杂化小时,两个轨道发生急剧变化。在亚轨道临界终点附近,轨道起伏增加,并伴随着电荷起伏。通过将自洽的巡回电子磁重归一化理论应用于轨道波动,还发展了亚轨道波动的临界理论。在轨道波动的高斯近似中描述了临界终点,一阶跃迁和交叉。

著录项

  • 作者

    Hattori, Kazumasa;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号